一、电化学储能工作原理?
从原理上讲,电化学电容器的电能存储机理有两种,一种是将电荷存储在电极/电解质溶液界面处电双层中,典型的发高比表面各炭为电极材料;另一种是利用发生在电极表面的二维或准二维法拉第反应存储电荷,一般以某些过渡金属氧化物为电极材料,典型的代表是二氧化钌(RuO2)。
二、电化学检测器的工作原理?
在两电极之间施加一恒定电位,当电活性组分经过电极表面时发生氧化还原反应(电极反应),电量(Q)的大小符合法拉第定律:Q=nFN。因此,反应的电流(I)为:I=nFdN/dt,式中n为每摩尔物质在氧化还原过程中转移的电子数,F为法拉第常数,N为物质的摩尔数,t为时间。当流动相的流速一定时,dN/dt与组分在流动相中的浓度有关。
三、电化学双极膜工作原理?
电化学双极膜是一种新型的离子交换复合膜,它通常由阳离子交换层(N型膜)、界面亲水层(催化层)和阴离子交换层(P型膜)复合而成,是真正意义上的反应膜。在直流电场作用下,双极膜可将水离解,在膜两侧分别得到氢离子和氢氧根离子。利用这一特点,将双极膜与其他阴阳离子交换膜组合成的双极膜电渗析系统,能够在不引入新组分的情况下将水溶液中的盐转化为对应的酸和碱,这种方法称为双极膜电渗析法。双极膜电渗析法不仅用于制备酸和碱,若将其与单极膜巧妙地组合起来,能实现多种功能并可用于多个领域。
双极膜电渗析的工作原理如下:
电渗析是在直流电场作用下,溶液中的带电离子选择性地通过离子交换膜的过程。主要用于溶液中电解质的分离。在淡化室中通入含盐水,接上电源,溶液中带正电荷的阳离子,在电场的作用下,向阴极方向移动到阳膜,受到膜上带负电荷的基团的异性相吸引的作用而穿过膜,进入右侧的浓缩室。带负电荷的阴离子,向阳极方向移动到阴膜,受到膜上带正电荷的基团的异性相吸引的作用而穿过膜,进入左侧的浓缩室。淡化室盐水中的氯化钠被不断除去,得到淡水,氯化钠在浓缩室中浓集。
使用双极膜电渗析技术制备酸碱具有明显的优势:能耗低,装置体积小,可节约投资;整个过程无氧化和还原反应发生,无副反应产物,没有污染。
四、光电化学生物传感器的分类?
生物传感器主要有下面三种分类命名方式。
(1)根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器(enzymesensor)、微生物传感器( microbialsensor)、细胞传器(organallsensor)、组织传感器(tis-suesensor)和免疫传感器(immunolsensor)。显而易见,所应用的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。
(2)根据生物传感器的换能器即信号转换器分类有:生物电极(bioelectrode)传感器、半导体生物传感器( semiconductbiosensor)、光生物传感器(opticalbiosensor)、热生物传感器( calorimetricbiosensor)、压电晶体生物传感器(piezoelectricbiosensor)等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。
(3)以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器( affinitybiosensor)、代谢型或催化型生物传感 三种分类方法之间实际上互相交叉使用。
五、aip工作原理包括热机和电化学?
不依赖空气推进系统(AIP)是指潜艇在水下不依赖外界的空气也能提供推进动力和其他动力的能源系统。
常规潜艇的AIP(Air Independent Propulsion)系统主要利用自身携带的氧气(通常为液氧),为热机或电化学发电装置提供燃烧条件,完成能量转换,提供水下航行所需的推进动力。 目前,国外常规潜艇的AIP系统主要分为两大类:热机系统和电化学系统。其中热机AIP系统主要包括闭式循环柴油机(CCD/AIP)、斯特林发动机 (SE/AIP)、闭式循环汽轮机(MESMA/AIP)、核电混合推进系统(SSN/AIP);电化学AIP系统主要是聚合物电解质膜燃料电池(PEM /AIP),包括碱性燃料电池、质子交换膜燃料电池。但目前国外技术较为成熟、或者已进入实用阶段,能够大幅提高常规潜艇水下作战能力的AIP系统主要是闭式循环柴油机、斯特林发动机、闭式循环汽轮机和燃料电池这四种。这些AIP系统有的已经成功进行了试验,有的已经装备新型潜艇。
六、光纤生物传感器原理?
光纤生物传感器与传统电化学生物传感器相比,具有不受电磁干扰、耐酸碱腐蚀、不需要参比传感器以及探头结构可微型化等优点,因此受到青睐。
根据传感器的信号转换方式,目前研究较多的光纤生物传感器为光纤倏逝波传感器、表面等离子体共振传感器(SPR)、荧光猝灭传感器和光纤光栅传感器,但都存在着制作复杂、成本高的问题。
除光栅型光纤传感器以外,其他几种均为光强探测型传感器,容易受到光源、光纤连接损耗等方面的影响。
七、生物电化学系统工作原理?
生物电化学系统(bioelectrochemical system,BES)是新兴的污水处理及资源回收技术,已证实其对印染、化工、医药、食品加工等工业废水具有很好的处理效果,同时能以氢气、沼气、电能或者中水的形式高效回收资源,是一种结合生物技术和电化学还原/氧化技术优势的耦合系统。
该系统阳极和阴极中至少有一个电极会发生微生物催化的氧化/还原反应,在电极上发生有微生物或者微生物代谢产物参与的电子传递过程。近年来,学者们对生物电化学工艺在强化难降解废水处理中的应用开展了大量研究,并在影响因素、处理对象多元化等方面获得重要进展。
八、电化学刻蚀的原理?
电蚀刻是利用金属在以自来水或盐水为蚀刻主体的液体中发生阳极溶解的原理,(电解的作用下)将金属进行蚀刻,接通蚀刻电源,从而达到蚀刻的目的。
蚀刻机可以分为化学蚀刻机及电解蚀刻机两类。在化学蚀刻中是使用化学溶液,经由化学反应以达到蚀刻的目的,化学蚀刻机是将材料用化学反应或物理撞击作用而移除的技术。
九、电子纳米生物传感器原理?
据悉,原子力显微镜上纳米尖的升降运动可以通过放置在悬臂梁固定端的传感器的变形去测量。但由于研究人员需要处理的是一种极为细微的运动——甚至小于一个原子——他们不得不再变个戏法。
通过与歌德大学(Goethe Universität)Michael Huth教授的实验室进行合作,他们开发出了一种由被绝缘碳基体包围着的高导电铂纳米粒子组成的传感器。在正常情况下,碳会隔离电子。但在纳米尺度上,发挥作用的是量子效应:一些电子会跳过绝缘材料,从一个纳米颗粒旅行到下一个纳米颗粒上。“这有点像人们在路上遇到了一堵墙,只有勇敢的少数人才设法怕了过去。”Fantner说。
于是,当传感器的形状改变时,纳米粒子彼此的距离变远,电子在它们之间跳跃的次数就变少了。因此电流的变化就揭示了传感器的形变程度以及样品的组成。
十、电化学防锈原理?
生锈的原因主要是电化学腐蚀和空气氧化的作用,纯净的金属或是活泼的金属主要是由于金属表面与空气中的氧气发生了氧化反应的结果,在金属表面生成了金属氧化物,也就是锈。
如果金属中含有较多的杂质,这些杂质就会和金属形成化学原电池,发生电化学腐蚀,从而将金属氧化生成金属氧化物。
怎么防止锈蚀呢?
例如铁生锈之后产生的氧化膜稀松更加速了金属氧化,钢铁生锈是由于铁跟周围物质发生化学反应所引起的,那么,钢铁的防锈也必须从钢铁和周围物质两方面来考虑。
生产上常用的一些防锈方法有
(1)覆盖保护层:即在钢铁表面覆盖致密的保护层,使之和周围物质隔离开。如在铁制品表面涂上一层油漆、沥青、塑料、搪瓷等非金属材料。短期的防腐可涂上机油、凡士林、石蜡等。
(2)改变钢铁的内部组织结构:炼钢时加入某些合金元素,从根本上改变普通钢铁的内部结构,起到抗蚀作用。例如把铬、镍等加入碳素钢里制成不锈钢。此外,利用热处理或渗铬、渗铝、渗氮等来改变钢铁的内部组。
(3)改善腐蚀环境,即加入少量缓蚀剂来防止腐蚀。例如用亚硫酸钠除去水中的氧,可防止锅炉腐蚀织,或使金属产生一层抗蚀性能很强的表面。
(4)电化学保护法,即根据电化学原理而采用的方法。此法常用于海水或河道中钢铁设备的保护。除了采取各种防锈措施外,在钢铁制品的保管中还应保持环境干燥、清洁,保护其防护层或包装不受损坏等。